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1. Phys. A: Math. Gen. 21 (1988) 3749-3761. Printed in the UK 

Wehrl’s entropy of spin states and Lieb’s conjecture 

Ching Tsung Lee 
Department of Physics, Alabama A & M University, Normal, AL 35762, USA 

Received 28 March 1988 

Abstract. Wehrl’s entropy is the entropy of the probability distribution in the phase space 
corresponding to the Q representation (antinormal ordering of operators) of a quantum 
state in terms of coherent states. The Hilbert space of a system of N spins (or N two-level 
atoms) is of 2N dimensions. The subspace with maximum total spin N / 2  is of N + 1 
dimensions. All the discussions in this paper are restricted within this subspace. The 
probability amplitude for an arbitrary pure state in this subspace is a polynomial of degree 
N which can be factorised into the product of N linear factors and each root can be 
identified with one point on the unit sphere. Hence, an arbitrary state in the subspace can 
be represented geometrically by N unit vectors. The general expression for the Wehrl 
entropy is obtained as a finite series expansion in terms of some symmetric functions of 
sin2(w,,/2), where w,, is the angle between a pair of unit vectors. The special cases of 
coherent and almost coherent spin states are then considered. It was pointed out by Lieb 
that the Wehrl entropy of a coherent spin state of an N-spin system is N / (  N +  1) and it 
was conjectured by him that this is the absolute minimum. Based on the fact that, in the 
geometric representation of a coherent spin state, the N points on the unit sphere condense 
into a single point, i t  is shown that the Wehrl entropy of a coherent state is a local minimum; 
thus Lieb’s conjecture is partially confirmed. It is also conjectured that the maximum 
Wehrl entropy is attained when the N points form a possible regular polyhedron. 

1. Introduction 

Two kinds of coherent states are widely used in quantum optics to describe radiation- 
matter interaction; namely, the Glauber coherent states for a quantum harmonic 
oscillator (Schrodinger 1926, Glauber 1963, Sudarshan 1963) and the coherent spin 
states (also called the atomic coherent states) for a system of spins or a system of 
two-level atoms (Radcliffe 1971, Arecchi et a1 1972). Intuitively, coherence can be 
considered as the opposite of chaos; thus one important characteristic of coherent 
states is that they have minimum uncertainties measured by standard deviation. 
However, some serious defects in using standard deviation as the measure of 
uncertainties have been discussed by Uffink and Hilgevoord (1985) and, on the other 
hand, Deutsch (1983) has proposed the use of entropy as an alternative measure of 
uncertainties. 

Quantum mechanical entropy has been defined by von Neumann as -Tr(p* In p * ) ,  
where p* is the density matrix or density operator. The trouble with this definition is 
that a pure quantum state, coherent or not, always has a minimum entropy of 0. This 
certainly cannot display the unique character of coherent states. Wehrl (1979) intro- 
duced a new definition of ‘classical’ entropy in terms of the Glauber coherent state Iz) 
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as 

S =  - - p ( z )  In p ( z )  1: 
where 

is the diagonal element of the density matrix and, hence, must be non-negative. It 
was conjectured by Wehrl (1979) and proved by Lieb (1978) that a Glauber coherent 
state has a minimum entropy of 1 as defined by (1.1). 

We believe that this new definition of entropy can best characterise the uniqueness 
of a coherent state. We also recognise that p ( z )  defined by (1.2) is exactly the 
distribution function corresponding to antinormal ordering of operators, which was 
first discussed by Husimi (1940) and was advocated again by Kano (1965); in the 
terminology of phase space representation of coherent states (see, for example, Haken 
1970) it is called Q representation, in contrast with Wigner’s (1932) W representation 
and Glauber’s (1963) P representation. 

The Q representation and its extension for spin coherent states is finding increasing 
use in a number of areas such as quantum chaos by Takahashi and Sait8 (1987) and 
by Toda and Ikeda (1987). In its original definition, the Wehrl entropy is relevant to 
a special class of simultaneous measurement of position and momentum (see, for 
example, Davies 1976, Milburn 1985). In view of these developments, it should be of 
current interest to explore the extension of Wehrl’s definition of entropy to spin coherent 
states for possible use in quantum chaos and possible special interpretation in measure- 
ment theory. 

In the same paper by Lieb (1978), it was also conjectured that the extension of 
Wehrl’s definition of entropy for coherent spin states will yield a minimum entropy 
of N / ( N +  l) ,  where N is the number of spins in the system. 

The original motive of this work was to prove Lieb’s conjecture. But we will first 
try to lay the foundation, keeping in mind also the possible future exploration of other 
aspects of spin states. In 0 2 we will use a geometric representation for the distribution 
function of an arbitrary pure state in the ( N  + 1)-dimensional subspace with maximum 
total spin characterised by N unit vectors. In 0 3 we will derive the general expression 
for the Wehrl entropy of an arbitrary spin state with maximum total spin in terms of 
sin2(wu/2), where wij is the angle between a pair of two unit vectors. In 0 4 we will 
focus our attention on the coherent spin states and show that the N unit vectors 
representing a coherent spin state must be identical, i.e. all the wij are zero. Then for 
an almost coherent state considered in 0 5, we have sin2(wij/2) << 1 for any pair of unit 
vectors. This will be the basis in our approach to prove that the Wehrl entropy of a 
coherent spin state is a local minimum. Unfortunately, we are unable to prove that it 
is also a global minimum. 

It is interesting that the proof of Wehrl’s conjecture was published one year before 
the conjecture itself was formally published. In contrast a decade has passed since 
the publication of Lieb’s conjecture without its confirmation being seen in the literature. 
This is, perhaps, an indication of the degree of difficulty we face in finding the proof. 
In view of this fact our partial solution might be a worthwhile first step towards the 
final solution. 
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2. Basic formulation 

2.1. Q representation of a maximum total spin state 

It is well known that, as far as mathematical formulation is concerned, a system of N 
two-level atoms is exactly the same as a system of N spins. This equivalence was first 
used by Dicke (1954) to develop his theory of superradiance. The basic quantum 
states are denoted by Ir, s ) ,  which have since been called Dicke states, where r is called 
the cooperation number and s is half of the difference of the number of atoms in the 
excited state and that in the ground state. But for a spin system the physical meanings 
are different; r is the total angular momentum of the system and s is the eigenvalue 
of the z component of the angular momentum. 

In this paper, we will consider only the case with r = N/2;  so there are N + 1 
possible values for s, ranging from - N / 2  to + N/2. For simplicity we will use In) to 
denote the basic eigenstates with n = N / 2  + s so that n runs from 0 to N. 

In lemma 2 of Lieb's (1978) paper, it is proved that the state that minimises the 
Wehrl entropy must be a pure state. Because of this we will restrict ourselves to 
considering pure states only. 

The density matrix of an arbitrary pure state in the ( N  + 1)-dimensional subspace 
can be written in terms of the Dicke states In) as 

N N  

bN' c C*,Cnln)(ml (2.1) 
n = O  m=O 

with the normalisation condition 

N 

c:cn=l. 
" = O  

A coherent spin state can then be expressed as 

where 8 and 4 are two angles in the standard spherical coordinate system. The 
probability density function over the spherical surface in the Q representation is defined 
as 

where 

is a polynomial of degree N, and the Wehrl entropy is defined as 

From (2.4) we can see clearly that &(e,  4 )  is always non-negative, which is 
absolutely necessary to ensure that S, is well defined. 
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2.2. Factorisation and geometric representation 

To carry out the integration in (2.6) it is convenient to reduce PN (8, 4 ) of (2.5) to its 
N linear factors. It is always possible to express P N ( 8 ,  4)  as the following product: 

N 

p N ( e ,  4) K g 2  n ~ ( 0 3 4 ;  ei, 4i) (2.7) 
i = l  

where K N  is the normalisation factor and 

p (  8, 4; B i ,  4i) = cos( 8/2) cos( 8,/2) +sin( 8/2) sin( 8,/2) ei('-'c). (2.8) 

Substitution of (2.7) into (2.4) gives 

with 

d e ,  4; 81, 41) = IP(@, 4; 81, 4J1)I2= cos2(w,/2) (2.10) 

where w,  is the angle between (8 ,  4) and (et,  41) .  
Expressing P N (  8, 4)  in this way will provide a simple geometric representation 

and hence a clear picture of the distribution function O N ( @ ,  4). Consider (el ,  4[) as 
the direction of a unit vector or as the coordinate of a point on the surface of the unit 
sphere; then an arbitrary pure state with maximum total spin of an N-spin system can 
be characterised by the locations of N points on the surface of the unit sphere. From 
(2.9) and (2.10) we see that the distribution function is the product of N individual 
distributions, each being proportional to c0s2(w,/2), which peaks at the point (e, ,  4[) 
and vanishes at the diagonally opposite point. 

2.3. Rotation of the coordinate system 

The integration in (2.6) is over the whole surface of the unit sphere. Therefore S ,  is 
invariant under any rotation of the coordinate system. We will use this fact to simplify 
its calculation. Consider 

(2.11) 

as the state vector of a one-particle (spin or two-level atom) state so that (2.8) and 
(2.10) can be written as 

P ( 8 ,  4; 6 ,  41) = (4, 4!l& 4) (2.12) 

and 

d e ,  4; 81, 4,) = (6, 4l@l, 4,)(6, 4,l4 4). (2.13) 

Then consider a rotation represented by the matrix 

(2.14) 
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Under this rotation we have 

T(Bn, 1,) 
P ( 4  4 ;  e,, 41) - P m ( 0 ,  4 )  (2.15) 

where 

Pln(e, # ) = ( e , ,  #,Iw,,, #,,)I@, 4) 
 COS(^,/^)  COS(^,,/^) ~ 0 ~ ( 8 / 2 ) + s i n ( e , / 2 )  sin(e,/2)  COS(^/^) ei('m-'i) 

+COS( e,/2) sin(0,,/2) sin(e/2) ei('-'n' 

- sin(e,/2)  COS(^,,/^) sin(e/2) el('-+i). (2.16) 

The significance of T (  e,,, #,,) can be seen in the special case when (e,,, #,,) coincides 

Pii(4 4 )  =cos(e/2).  (2.17) 

with (e,,  4 , ) ;  then (2.16) reduces to 

Under this rotation q( 8, #; e,, 4g) becomes 

q i n ( e ,  4 ) = I P l n ( e ,  4r 
= 4[ 1 + cos U,,, cos e + ( f in  e'' +A,, e-") sin e] (2.18) 

where 

f;,, =;[cos el sin en -sin e, cos e,, cos(4, - 4,) + i sin en sin(4,, - 4 # ) ]  el'n. (2.19) 

3. General expression for the normalisation factor and the entropy 

In this section we will derive formulae for the normalisation constant K N  and the 
Wehrl entropy SN for an arbitrary pure spin state with maximum total spin. They will 
be expressed as finite series expansions in terms of some symmetric functions of 
sin2(wg/2). We need two kinds of symmetric functions; they are defined as follows: 

uijIuij2 * * u i ~ J . ~ k ~ I , u k ~ / ~  * * * uk,,,lw, (3.2) 

uij = sin2(wij/2) (3.3) 

where 

and the * indicates a restriction on the summations so that all non-repeated indices 
in each term take different values. A particular case is the definition in (2.1) when 
rn = 0 should be specified as DON 

The general definitions of (3.1) and (3.2) seem to be somewhat complicated. So it 
might be helpful to look at some specific examples as illustration: 

1. 

D:= u ~ 2 ' 3 4 ~ u 1 2 u 3 5 ~ u 1 2 u 4 5 ~ u 1 3 u 2 4 ~ u 1 3 u 2 5 ~ u 1 3 u 4 5 ~ u 1 4 Q 2 3  

+ u14'25-t u14u35+ u15'23+ u1S'24+ u15'34+ u23'45+ u24'35+ u25u34 



3754 C T Lee 

3.1. General expression for K N  

The normalisation factor KN appears in the following expression for the distribution 
function: 

N 

Q N ( e , d ) =  KN n qin(8, 4) 
i = l  

N 

= KN n [cos2( 8/2) - uin cos 8 + (f; ei' + J n  e-i') sin( 8/2) cos( 8/2)] 
i = l  

(3.4) 

(3.5) 
where n can be arbitrary. KN is then to be determined by the following normalisation 
condition: 

where in is defined in (2.18), which implies the very useful relation 

f ;f;, +hJ$ = uin + ujn - uij - 2ui,uj, 

Using (3.4) and (3.5) in (3.6), and some thorough investigation, we can convince 
ourselves that the inverse of KN can be expressed as a finite series expansion in terms 
of the symmetric functions defined by (3.1) and (3.2) in the form 

where 

N / 2  if N is even 
[Nli1={(N-1)/2 if N is odd 

and the expansion coefficients can be calculated by the following formulae: 

[ n / 2 1  m + n + i + j  ( N  -2m - n - l ) !  n !  
( N  - 2m - n - j  - l ) !  (m + i + j ) !  ( n  - 2i - j ) !  i ! j !  eZ ,n=  C 1 (-1) 

i=o  j = o  

x 1; de[sin( 8/2)]2(m+z+'J)+1 [cos( 0/2)]2(N-m-n+r)+l (COS e)n-2i-J 

= O  
where 

M =  min{N -2m - n - 1, n - 2 i ) .  

The result in (3.10) will be derived in appendix 1. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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Using (3.9) and (3.10) in (3.7) we obtain 

(3.12) 

3.2. General expression for  SN 

The major difficulty in using (2.6) to calculate the Wehrl entropy is caused by the 
logarithmic function. Our strategy to overcome this difficulty is the following; we use 
(3.4) in (2.6) and break down the whole integral into the summation 

N 

SN = -In K N  - 1, 
i = l  

(3.13) 

where 

Each of the integrals Ii is still invariant, by itself, under any rotation of the coordinate 
system. So we have the freedom to adopt a suitable rotation to simplify the calculation 
of each of the Z i  individually. For a particular Zi we choose the rotation T(Bi,  c$~) as 
defined by (2.14); then we can have 

In qin( e, 4)  = In qii(  e, 4) = In COS'( 812). (3 .15)  

Using this strategy and some thorough investigation, we find that the general 
expression for the Wehrl entropy can be written as 

where 

6, N = ( - 1 y -  ( N +  ') 1; df3((N -2m)(2m - l)[sin(e/2)~2m+'[~os(8/2)]2(N-m)+1 
m !  

= 

( N  -2m - n - I ) !  n !  
( N  -2m - n - j  - I ) !  ( m  + i + j ) !  ( n  -2 i  - j ) !  i ! j !  i=o j - 0  

x 1; dO[sin( O/2)]2(mti+j)+l 

x [COS( e/2)12( - m - n + i ) + l  (cos In  COS^(^/^) 

( N  - m - n ) !  ( n  - 2)!  
N !  

= ( - l ) m + l  

(3.16) 

(3.17) 

(3.18) 

The last result will be derived in appendix 2. 
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Substitution of (3.17) and (3.18) into (3.16) yields 
( N - m ) !  

m = l  I = N - m + l  

[N/2]  N-2m-1 ( N  - m - n)!( n -2)! N 
- c c (-1Y N !  E:,.] + x - l n  K N .  

m=O n = 2  

(3.19) 

4. Coherent spin states 

From the definition given in (2.3) we can easily obtain the probability density function 
in the Q representation for a certain coherent spin state of an N-spin system leo, 40)N 
as 

Q N ( e ,  4; 40) (0, 416(eO, dolle, 4)" = d 0 ) N l 2  

= /COS( 812) cos( e0/2) + ei('-'o) sin( e/2) sin( 0 ~ / 2 ) 1 * ~  

= [cos(oo/2)]2N (4.1) 
where wo is the angle between (e, 4) and (eo, 40). 

Equation (4.1) implies that the N points on the unit sphere in the geometric 
representation of a spin state reduce to a single point for the particular case of a 
coherent spin state; this in turn implies that 

(4.2) 
for any pair of unit vectors. Using (4.2) in (3.1) and (3.2), we have 

(T.. = 0 

0," = 5m,O (4.3) 

(4.4) 

K N = l  S N  = N/(N+1).  (4.5) 

N E m,n = 0. 

Now we can use (4.3) and (4.4) in (3.12) and (3.19) to obtain 
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5. Almost coherent spin states 

If the N points on the unit sphere in the geometric representation of a spin state are 
all very close to one another, it is considered as an almost coherent spin state. Let 

( 5 . l a )  

A6,  6, - 60 A41 4, - 40 ( 5 . l b )  

then, for an almost coherent state, we have 

/ lo,<< 1 A+,<< 1 (5.2) 

for i = 1 , 2 , .  . . , N. 
The task of this section is to derive the Taylor series expansion for the Wehrl 

entropy of an almost coherent spin state in terms of the A6,  and the A 4 , .  We will see 
later that the first-, second- and third-order terms in the expansion all vanish identically; 
hence, the series expansion will be carried to the fourth order. As will be seen later, 
to reach the fourth-order terms for SN, we need only to use the leading second-order 
terms of uv. 

The Taylor series expansion for COS U,, is 

cos wIJ cos 6, cos 6, +sin 6, sin 6, cos( 4, - 4,) 

= = l - ~ ( A 6 1 - A 6 J ) 2 - ~ s i n z  (5 .3)  

(5.4) 

Thus the Taylor series for uv is 

cry ==$(AO, -AO,)’+f sin2 O0(A4, -A+,)’. 

From (3.12) and (3.19), we have 

1 1 
N N ( N - 1 )  K-,’=l--D?+ D2N (5 .5a)  

N 1 2 N - 3  1 D? - SN =- + I(,( - Ly - 
N + l  N N( N - i ) 2  N ( N - 1 )  

(5 .5b)  

The few terms shown in (5 .5a)  and (5 .5b)  are all we need in order to obtain the Taylor 
series up to the fourth order. 

Substitution of (5 .5a)  into (5.5b) gives 

and, by definition, we have 

D ? s Z  u!J 
I ,>I 

(5 .7a)  

(5 .76)  

(5 .7c)  
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where the * again indicates the restriction that the indices i, j ,  k and I must all be 
different in the same term. 

Using (5.4) and (5.7) we obtain 

( 5 . 8 ~ )  
N 
4 

0; -( F, + F3) 

( F,  + F~) ’  - N (  - ’ )  G + ( F: - F,  F3) (5 .8b )  
N 2  - 3 N  + 3 

32 32 
02” = 

3 N - 6  N ( N - 2 )  G-W- F,F,) 
32 E G “ 3 2  (FI’ F3)‘ + ( 5 . 8 ~ )  

where we have introduced some new symmetric functions defined as follows: 

F,  = (5.9a) 
i 

F2= sin Bo (Aei)(Adi) 
I 

(5 .9b)  

F3 = sin’ eo (Adi)’ ( 5 . 9 c )  

G = E  [(ABi)’+sin2 60(Aq5i)2]2.  
i 

Now, substituting (5.8) into (5.6),  we have 

( F2)2 
1 1 

( F ,  - Fd2+ 8( N - 1)’ N + l  3 2 ( N - 1 ) *  
S N  =- N +  

(5 .9d)  

(5.10) 

The first term on the right-hand side of (5.10) is the entropy of the coherent spin state. 
It is obvious that the rest of the expression is positive semidefinite. This proves that 
the Wehrl entropy of a coherent spin state is a local minimum. This minimum should 
be very flat because the first non-vanishing higher-order terms are of the fourth order. 

6. Conjecture on maximum entropy states 

We have seen in this paper that the Wehrl entropy of a spin state with maximum total 
spin attains a minimum when all the N roots of its probability amplitude function in 
the Q representation are identical, i.e. the N points on the surface of the unit sphere 
in the geometric representation all coincide at a single point. Equation (5.10) indicates 
that, as these points spread out a little, the Wehrl entropy increases. It is natural to 
speculate that as these points spread further apart-from one another the Wehrl entropy 
will continue to increase until these points are as far as possible from one another on 
the unit sphere. Therefore, we conjecture that the maximum Wehrl entropy is attained 
by a pure spin state with maximum total spin when the N points in its geometric 
representation are located as follows. For N = 2 ,  the two points are diametrically 
opposite to each other; for N = 3 ,  the three points form an equilateral triangle on a 
large circle; and for N = 4, 6,  8, 12, 20, etc, the N points form regular polyhedra. 
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7. Summary 

In this paper we have considered the probability distribution over the surface of a unit 
sphere for an arbitrary pure spin state with maximum total spin of an N-spin system 
in terms of the Q representation of coherent spin states or atomic coherent states. We 
have used a geometric representation of the distribution function as N points on the 
surface of the unit sphere or N unit vectors. We have introduced two kinds of symmetric 
functions 0," and E:,, of sin2(w,/2), where wv is the angle between a pair of unit 
vectors. We have obtained a general expression for the Wehrl entropy of an arbitrary 
maximum total spin state as a finite series expansion in terms of 0," and E:, , .  We 
have shown that the N unit vectors characterising a spin state all join together in the 
special case of a coherent spin state. Based on this fact we have obtained a Taylor 
series expansion for spin states in the neighbourhood of a coherent spin state. This 
series expansion establishes that the Wehrl entropy of a coherent spin state is a local 
minimum. Therefore, Lieb's conjecture is partially confirmed. 
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Appendix 1. Evaluation of e:," 

We first evaluate the integral in the formula for e:,, given in (3.10) as follows: 

1; de[sin( 8/2)]2(m+'+J)+1 [COS(e/2)12(N-m-n+r)+1 (cos e)"-"-J 

B ( m +  i + j +  k + l ,  N - m - i - j - k + l )  
k = O  

where the contour integral should be taken around the origin of the complex plane. 
Substituting (Al . l )  into (3.10) we obtain 

(A1.2) 
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where we have fixed the upper limit of j to be N - 2m - n - 1 because, in case the 
latter is greater than n - 2i, those terms corresponding to j > n - 2i cannot survive the 
contour integral. The summation over j in (A1.2) can be easily carried out to yield 

( N - m - n ) ! n !  1 -(1+Z)(1-z2)-(N-m-n+l) dz 
( N + l ) !  ,$z"+' 

e:,fl = ( - I ) ~ + "  

i = O  1 - z  
( N - m - n ) ! n !  1 dz 

( N + l ) !  ,fi"i' 
= (-1)m+n - (1 + 2) = 0 (Al.3) 

where we let i run up to 0;) because those terms corresponding to i > [ n/2] cannot 
survive the contour integral and the last result was obtained since n 2 2. 

Appendix 2. Evaluation of 

We first evalute the integral in the formula for E:,. given in (3.18) as follows: 

j: d8[sin( 8/2)]2(m+'+J)+1 [cos( e /  2) ]Z N - m - n  + I )+ 1 (cos e)"-"' In c0s2(e/2) 

= IT-21-J ( - l )k (  n - 2 i - j  ) B ( m + i + j + k + l , N - m - i - j - k + l )  
k = O  

l o l  d t  t N - m - i - ~ - k  - t N + l  

1 - t  

- ( n  - 2i - j ) !  ( m  + i + j)! ( N  - m - n + i)! - 
( N + l ) !  

where we have dropped the term ji d t  t N + l / (  1 - t)  because its contribution to E &  has 
the factor e& = 0, as shown in appendix 1. Substituting (A2.1) into (3.18) and carrying 
out the summation over j, we obtain 

N - m - n + l  ( N  - m - n)! n!  t 
t(1- t )  27ri 

N - m - n + i  X 

i = O  

= (-1)m+n 

N - m - n + l  t (1 + z(1-  i,) 

( N - m - n ) ! ( n - 2) ! 
N! 

- - ( - l ) m + l  (A2.2) 
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